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Structure

• Homework
• IPW and Sampling
• Matching

– Nearest Neighbor
– Mahalanobis distance
– Genetic Matching
– CEM

• Beyond Matching

– Entropy balancing, etc

Homework

• [C]onsider a stratified estimator that controls for Zi by

(i) partitioning the sample by values of Zi, then
(ii) taking the difference in treated and control means within each of these

strata, and then
(iii) combining these stratum-specific estimates with a weighted average,

where we weight each stratum contribution by the share of the P in
each stratum

Notation and Setup

• So we consider the following two expectations:

– E[Yi(1)− Yi(0)|Zi = 1] weighted by pZ = P (Zi = 1)
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– E[Yi(1)− Yi(0)|Zi = 0] weighted by 1− pZ
• Then we want the weighted sum to be E[Yi(1)− Yi(0)]
• Homework: Is this possible?

The kink

• We do not observe principal Strata (counterfactual treatments)
• But we still need to think about them.
• If you talked about them on the homework, you were probably on the right

track.

Decompose to Principal Strata

• Within the stratum Z = 1, we have the following:

– pcomp = P (Di(1)−Di(0) = 1)
– pNT = P (Di(1) = Di(0) = 0)
– pAT = P (Di(1) = Di(0) = 1)
– pdef = P (Di(1)−Di(0) = −1) = 0

• And these probabilities are equal (in expectation) across strata defined by
Z due to random assignment

Principal Strata TEs

• Each principal strata may have its own conditional average treatment effect

– ρcomp = E[Yi(1)− Yi(0)|Di(1)−Di(0) = 1]
– ρNT = E[Yi(1)− Yi(0)|Di(1) = Di(0) = 0]
– ρAT = E[Yi(1)− Yi(0)|Di(1) = Di(0) = 1]
– ρdef = E[Yi(1)− Yi(0)|Di(1)−Di(0) = −1]

• We don’t assume anything about these effects.
• Also note that these are equal across strata in Z due to random assignment

of Z.

Counterfactuals and Principal Strata

• But those effects assume counterfactual conditions in treatment that we
don’t observe.
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• For instance, for never takers:

– E[Yi(Di(1))− Yi(Di(0))|Di(1) = Di(0) = 0]
– This observed quantity may be simplified:
E[Yi(0)− Yi(0)|Di(1) = Di(0) = 0]

– Which is equal to zero.
– The same is true for always takers.

• This isn’t to say that Always-Takers wouldn’t be affected by treatment:
just that we never see them affected by treatment.

Complier TEs

• This is not the case for compliers, though.

– E[Yi(Di(1))− Yi(Di(0))|Di(1)−Di(0) = 1]
– This can be similar simplified to:
– E[Yi(1)− Yi(0)|Di(1)−Di(0) = 1]

• And we’ve assumed that there are no defiers.

Intention to Treat Effect

• This part isn’t necessary to fully grok, yet.
• This shows what we can get with a simple difference in means:

– ITT = E[Yi(Di(1))]− E[Yi(Di(0))]
– ITT = E[Yi(Di(1))− Yi(Di(0))|Di(1) = Di(0) = 0]× pNT+
E[Yi(Di(1))− Yi(Di(0))|Di(1) = Di(0) = 1]× pAT+
E[Yi(Di(1))− Yi(Di(0))|Di(1)−Di(0) = 1]× pcomp+
E[Yi(Di(1))− Yi(Di(0))|Di(1)−Di(0) = −1]× pdef

• Taking into account some things we know (observed effects of AT & NT is
zero, pdef = 0):

– ITT = E[Yi(1)− Yi(0)|Di(1)−Di(0) = 1]× pcomp
– We’re close, now!
– We just need to think about pcomp.

Intention to Treat Effect (on D)

• Given what we know, we can look at the following:
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– ITTD = E[Di(1)−Di(0)] =
E[Di(1)−Di(0)|Di(1) = Di(0) = 0]pNT+
E[Di(1)−Di(0)|Di(1) = Di(0) = 1]pAT+
E[Di(1)−Di(0)|Di(1)−Di(0) = 1]pcomp+
E[Di(1)−Di(0)|Di(1)−Di(0) = −1]pdef

– Or simply:
– ITTD = 1× pcomp
– Which is what we want.

And finally

• The observed difference in treatment across Z gives us pcomp.
• So we can simply take ITT

ITTD
= E[Yi(1)− Yi(0)|Di(1)−Di(0) = 1]

• This is a LATE (Local Average Treatment Effect) or CACE (Complier
Average Causal Effect) depending on who is talking about it.

• It’s the best we can do in the case of non-compliance like this. (More on
this stuff later in the semester)

Back to the homework!

• But the homework had even more significant issues, as we were looking
WITHIN strata.

• This essentially gets rid of the benefits of randomization.
• To get a good estimate for the population using this method, we have to

get a good estimate WITHIN each strata, too.
• In other words, we must be able to recover E[Yi(1)−Yi(0)|Z = 1] and vice

versa within each strata. This would allow:

– E[Yi(1)− Yi(0)|Z = 0](1− pZ) + E[Yi(1)− Yi(0)|Z = 1]pZ
• But can we get that?
• No. Not even a little bit.

What’s in a strata?

• For Z = 0, and our three principal strata, we have:

– Always Takers will be Di = 1
– Never takers will be Di = 0
– Compliers will be Di = 0

• So we can decompose the difference in means is as follows:
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– E[Yi(1)|Z = 0]− E[Yi(0)|Z = 0] = E[Yi(1)|Di(1) = Di(0) = 1]−
– E[Yi(0)|Di(1)−Di(0) = 1][ pcomp

pNT +pcomp
]−

– E[Yi(0)|Di(1) = Di(0) = 0] pNT

pNT +pcomp

• The key point is that these counterfactuals are not the ones we want.
• Even if they were, we still wouldn’t know what we were estimating without

knowing proportions in each strata (which we wouldn’t).
• For this to equal E[Yi(1) − Yi(0)|Z = 0], we would need to make some

strong assumptions directly on the potential outcomes.

What sort of assumptions work?

• If complier and never taker proportions are equal, then we get:

– E[Yi(1)|Di(1) = Di(0) = 1]−
1
2E[Yi(0)|Di(1)−Di(0) = 1] + 1

2E[Yi(0)|Di(1) = Di(0) = 0]
– This isn’t enough.

• The assumption we’d need would be on the equality of potential outcomes
across all principal strata (ludicrously strong):

– E[Yi(1)|Di(1) = Di(0) = 1] = E[Yi(1)|Di(1) = Di(0) = 0] =
E[Yi(1)|Di(1)−Di(0) = 1] = E[Yi(1)]

– And E[Yi(0)|Di(1) = Di(0) = 1] = E[Yi(0)|Di(1) = Di(0) = 0] =
E[Yi(0)|Di(1)−Di(0) = 1] = E[Yi(0)]

– (Since we randomized over Zi, it doesn’t help us to only assume this
only in strata of Zi)

– This WOULD allow us to get at the common causal effect. (But at
what cost?)

– For all practical purposes, this estimation strategy is DOUBLY not
identified.

Graphically

. . .

This is a ridiculous amount of regularity to assume, though.

Example

• What if we had all the data? (- Don Rubin)
• Assume a balanced design pZ = 1

2 and constant TE ρ = 20, with expected
potential outcomes as follows:
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Figure 1:
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. . .

Y1 Y2 size
Always-taker 10 30 20%
Never-taker 0 20 30%

Complier 65 85 50%

More Example

• The given estimator will target the following parameter (using the decom-
position from before):

. . .

Z = 1 Z = 0
Y1 85 · .2.7 + 30 · .2.7

69.286 30
Y0 65 · .5.8

0 40.625
ρ 69.286 -10.625

• This setup gives an estimand of 29.33. This is not the ATE (20).
• That is, we’ve derived the population estimand under this stratified esti-

mator.
• And we already assumed a lot of common issues away (balanced design,

constant effects)
• If we knew population sizes within principal strata, would this help?

Matching Big Picture

• ahem -
• MATCHING IS NOT AN IDENTIFICATION STRATEGY.
• Heckman, Ichimura, Smith and Todd (1998) provide a nice decomposition:

– B =
∫
S1X

E[Y0|X,D = 1]dF (X|D = 1)−∫
S0X

E[Y0|X,D = 0]dF (X|D = 0)
– B = B1 +B2 +B3
– B1 =

∫
S1X\SX

E[Y0|X,D = 1]dF (X|D = 1)−∫
S0X\SX

E[Y0|X,D = 0]dF (X|D = 0)
– B2 =

∫
SX

E[Y0|X,D = 0](dF (X|D = 1)− dF (X|D = 0))
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– B3 = PXB̄SX

– Matching addresses B1 and B2. CIA requires an assumptions to
control B3.

– Relative magnitudes are unknown.

• This gets to the question Cyrus has been repeating a lot: How could two
seemingly identical units receive different treatments?

Slightly Smaller Picture

• Okay, we have some random mechanism that exists after controlling for
covariates.

• Why don’t we just put them in a regression?

– There’s an intuitive appeal to be able to do all of this controlling
while keeping the outcome in a lockbox.

– Separating the procedures mean that you can address two types of
confounding separately.
1. Different treatment groups may have different chances of getting

treated.
2. Different treatment groups may have different baseline (control)

potential outcomes.
– A design which addresses both of these options separately is called
“doubly robust”.

– Double robustness means that we only have to get ONE of these right
for consistent estimation.

– (What’s the probability of getting a one out of two independent
bernoulli trials with π = 0?)

• I’m going to do most matching by hand to show you what’s under the
hood. You should use MatchIt for the homework.

• There’s an extensive manual – use it. I’ll have an example at the end.

Setup dataset

• Today, because we’re doing matching, we’re going to be looking at the
Lalonde data.

• If you ever read any paper about matching, you’ll probably see this data
again. (I’ve heard this called the Lalonde Fallacy)

. . .

8



require(MatchIt)
data(lalonde,package="MatchIt")
trt <- lalonde$treat==1
means <- apply(lalonde[,-1],2,function(x) tapply(x,trt,mean))
sds <- apply(lalonde[,-1],2,function(x) tapply(x,trt,sd))
rownames(means)<-rownames(sds)<-c("Treated","Control")
varratio <- sds[1,]^2/sds[2,]^2
ks.p <- suppressWarnings(apply(lalonde[,-1],2,function(x) ks.test(x[trt],x[!trt])$p.value))
t.p <- apply(lalonde[,-1],2,function(x) t.test(x[trt],x[!trt])$p.value)

View Initial Balance

round(t(rbind(means,sds,varratio,ks.p,t.p)),3)

## Treated Control Treated Control varratio ks.p t.p
## age 28.030 25.816 10.787 7.155 2.273 0.003 0.003
## educ 10.235 10.346 2.855 2.011 2.017 0.081 0.585
## black 0.203 0.843 0.403 0.365 1.219 0.000 0.000
## hispan 0.142 0.059 0.350 0.237 2.174 0.339 0.001
## married 0.513 0.189 0.500 0.393 1.624 0.000 0.000
## nodegree 0.597 0.708 0.491 0.456 1.161 0.081 0.007
## re74 5619.237 2095.574 6788.751 4886.620 1.930 0.000 0.000
## re75 2466.484 1532.055 3291.996 3219.251 1.046 0.000 0.001
## re78 6984.170 6349.144 7294.162 7867.402 0.860 0.162 0.349

Propensity Score

• The propensity score is based on a sort of Horvitz-Thompson estimator.
• Dividing by the probability of sampling means that we weight higher for

units with low inclusion probabilities.
• In our case, we can imagine having a sample of units (each with Y0 and
Y1). We then randomly assign them to treatment.

• This is equivalent to randomly sampling potential outcomes.
• So if we believe that treatment(/sampling) probabilities are assigned accord-

ing to some covariates, then we just need to know what those probabilities
are.

• Call the propensity score e(X). Then e(X) tells us the probability of sam-
pling Y1 (treating out sample as the population, because we’re interested
in a SATE).

• This suggests that we can just use 1
n1

∑n1
i=1

(Yi\N)
e(Xi) to estimate E[Y1].

• This embeds the logic of IPW.
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Fitting the Propensity Score

• First, estimate a model of the propensity score.
• (Typically just some logit)

. . .

p.model <- glm(treat~age+educ+black+hispan+married+nodegree+re74+re75,lalonde,family="binomial")
require(BayesTree)
# p.bart <- bart(lalonde[,-c(1,ncol(lalonde))],lalonde$treat,verbose=FALSE)
pscore.logit <- predict(p.model,type="response")
pscore.bart <- pnorm(colMeans(p.bart$yhat.train))
par(mfrow=c(1,2))
hist(pscore.logit)
hist(pscore.bart)

Figure 2:

Estimate Model

• What do you want to estimate? This will change the appropriate weights.
• For ATT, sampling probability for treated units is 1.

. . .

base.mod <- lm(re78~treat+age+educ+black+hispan+married+nodegree+re74+re75,lalonde)
ipw.logit <- trt + (1-trt)/(1-pscore.logit)
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ipw.logit.mod <- lm(re78~treat+age+educ+black+hispan+married+nodegree+re74+re75,lalonde,weights=ipw.logit)
ipw.bart <- trt + (1-trt)/(1-pscore.bart)
ipw.bart.mod <- lm(re78~treat+age+educ+black+hispan+married+nodegree+re74+re75,lalonde,weights=ipw.bart)
coefs <- c(base=coef(base.mod)[2],ipw.logit=coef(ipw.logit.mod)[2],ipw.bart=coef(ipw.bart.mod)[2])
coefs

## base.treat ipw.logit.treat ipw.bart.treat
## 1548.244 1331.985 1294.839

Propensity Score matching

• We don’t have to weight, though. We might match, instead.

. . .

ctl.data <- subset(lalonde,treat==0)
pscore.logit.ctl<-pscore.logit[!trt]
pscore.logit.trt<-pscore.logit[trt]
pscore.bart.ctl<-pscore.bart[!trt]
pscore.bart.trt<-pscore.bart[trt]
match.data <- subset(lalonde,treat==1)
matches <- sapply(pscore.logit.trt,function(x) which.min(abs(pscore.logit.ctl-x)))
match.data <- rbind(match.data,ctl.data[matches,])
pm.logit.mod<-lm(re78~treat+age+educ+black+hispan+married+nodegree+re74+re75,match.data)
match.data <- subset(lalonde,treat==1)
matches <- sapply(pscore.bart.trt,function(x) which.min(abs(pscore.bart.ctl-x)))
match.data <- rbind(match.data,ctl.data[matches,])
pm.bart.mod<-lm(re78~treat+age+educ+black+hispan+married+nodegree+re74+re75,match.data)

Estimation and such

plot(c(pscore.bart.trt,pscore.bart.ctl[matches]),jitter(rep(c(1,0),c(N,N))),axes=F,ylab="Treatment group",xlab="Propensity Score")
axis(1)
axis(2,c(0,1))

coefs <- c(coefs,pmat.logit=coef(pm.logit.mod)[2],pmat.bart=coef(pm.bart.mod)[2])
coefs

## base.treat ipw.logit.treat ipw.bart.treat pmat.logit.treat
## 1548.244 1331.985 1294.839 1963.873
## pmat.bart.treat
## 1929.536
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Figure 3:

Conditional Treatment effects

• You can also think about using the local linear regression we talked about
last week.

• Weight according to the propensity score.
• This allows you to see how the treatment effect varies along the propensity

score.
• Does the treatment only seem to have an effect on people who were very

unlikely to be exposed? etc

Mahalanobis Distance

• (x− µ)′V −1(x− µ)
• In our case, µ corresponds to a given treated unit.
• Mahalanobis distance is a very common distance “metric”.
• You can think about it as simple Euclidean distance in a warped feature

space (warped according the the inverse variance-covariance matrix)

. . .

V<-cov(lalonde[,-c(1,ncol(lalonde))])
match.data <- subset(lalonde,treat==1)
mahal.dist <- apply(match.data[,-c(1,ncol(match.data))],1,function(x) mahalanobis(ctl.data[,-c(1,ncol(ctl.data))],x,V))
matches <- apply(mahal.dist,2,which.min)
N <- length(matches)
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match.data <- rbind(match.data,ctl.data[matches,])
sort(table(apply(mahal.dist,2,which.min)))

##
## 1 17 23 59 72 95 96 97 112 127 150 158 168 177 199 202 220 224
## 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 235 237 238 247 265 278 290 291 322 326 327 330 339 341 345 354 361 366
## 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## 380 381 383 391 393 407 419 428 6 110 159 179 218 228 266 331 333 335
## 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2
## 353 355 372 412 99 269 308 374 399 400 416 134 253 367 376 392 226 140
## 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 5 6
## 388 373 352 118 368 423
## 6 7 8 9 13 18

Evaluate Balance

trt.factor <- rep(c("Treat","Control"),c(N,N))
means <- apply(match.data[,-1],2,function(x) tapply(x,trt.factor,mean))
sds <- apply(match.data[,-1],2,function(x) tapply(x,trt.factor,sd))
varratio <- sds[1,]^2/sds[2,]^2
ks.p <- suppressWarnings(apply(match.data[,-1],2,function(x) ks.test(x[1:N],x[{N+1}:{2*N}])$p.value))
t.p <- apply(match.data[,-1],2,function(x) t.test(x[1:N],x[{N+1}:{2*N}])$p.value)

View Matched Balance

round(t(rbind(means,sds,varratio,ks.p,t.p)),3)[-9,]

## Control Treat Control Treat varratio ks.p t.p
## age 25.546 25.816 8.745 7.155 1.494 0.003 0.745
## educ 10.443 10.346 1.841 2.011 0.838 0.999 0.628
## black 0.832 0.843 0.374 0.365 1.055 1.000 0.779
## hispan 0.059 0.059 0.237 0.237 1.000 1.000 1.000
## married 0.184 0.189 0.388 0.393 0.978 1.000 0.894
## nodegree 0.703 0.708 0.458 0.456 1.011 1.000 0.910
## re74 1871.365 2095.574 4213.141 4886.620 0.743 0.008 0.637
## re75 1141.974 1532.055 2428.479 3219.251 0.569 0.577 0.189

And Estimate ATT

mahal.match.mod <- lm(re78~treat+age+educ+black+hispan+married+nodegree+re74+re75,match.data)
coefs <- c(coefs, mahal.match=coef(mahal.match.mod)[2])
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coefs

## base.treat ipw.logit.treat ipw.bart.treat pmat.logit.treat
## 1548.2438 1331.9846 1294.8386 1963.8733
## pmat.bart.treat mahal.match.treat
## 1929.5358 417.8293

Genetic Matching

• This is a fancy and very effective algorithm developed by Jas Sekhon.
• The basic logic is as follows:

– Start with the mahalanobis distance solution.
– Evaluate balance (by default, by paired t-tests and KS tests on

covariates)
– Tweak the covariance matrix.
– New matching solution
– See if balance improved
– Iterate

• It uses a genetic algorithm to tweak the covariance matrix.
• It is NOT fast. And you should use a large value of pop.size, which will

make it even slower (10 is WAY too low. The default is 100, and even
that is too low). Also, you should use the available wrapper functions via
MatchIt (or even just in the Matching package)

. . .

require(Matching)
require(rgenoud)
#gmatch <- GenMatch(lalonde$treat,lalonde[,-c(1,ncol(lalonde))],pop.size = 1000,ties=FALSE,print.level=0)
matches <- gmatch$matches[,2]
match.data <- subset(lalonde,treat==1)
match.data <- rbind(match.data,lalonde[matches,])

Balance Tests for genMatch

trt.factor <- rep(c("Treat","Control"),c(N,N))
means <- apply(match.data[,-1],2,function(x) tapply(x,trt.factor,mean))
sds <- apply(match.data[,-1],2,function(x) tapply(x,trt.factor,sd))
varratio <- sds[1,]^2/sds[2,]^2
ks.p <- suppressWarnings(apply(match.data[,-1],2,function(x) ks.test(x[1:N],x[{N+1}:{2*N}])$p.value))
t.p <- apply(match.data[,-1],2,function(x) t.test(x[1:N],x[{N+1}:{2*N}])$p.value)
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View Matches Balance

• You won’t find better results for these metrics (doesn’t necessarily make it
“best”, though)

. . .

round(t(rbind(means,sds,varratio,ks.p,t.p)),3)[-9,]

## Control Treat Control Treat varratio ks.p t.p
## age 25.535 25.816 7.432 7.155 1.079 0.345 0.711
## educ 10.357 10.346 2.273 2.011 1.278 0.899 0.961
## black 0.838 0.843 0.370 0.365 1.028 1.000 0.887
## hispan 0.059 0.059 0.237 0.237 1.000 1.000 1.000
## married 0.222 0.189 0.416 0.393 1.125 1.000 0.441
## nodegree 0.703 0.708 0.458 0.456 1.011 1.000 0.910
## re74 1729.514 2095.574 3750.170 4886.620 0.589 0.184 0.419
## re75 1446.087 1532.055 2879.395 3219.251 0.800 0.950 0.787

And Estimate ATT

gen.match.mod <- lm(re78~treat+age+educ+black+hispan+married+nodegree+re74+re75,match.data)
coefs <- c(coefs, gen.match=coef(gen.match.mod)[2])
coefs

## base.treat ipw.logit.treat ipw.bart.treat pmat.logit.treat
## 1548.2438 1331.9846 1294.8386 1963.8733
## pmat.bart.treat mahal.match.treat gen.match.treat
## 1929.5358 417.8293 258.2472

CEM

• CEM just creates bins along each covariate dimension (either pre-specified
or automatic)

• Units lying in the same strata are then matched together
• Curse of dimensionality means that with lots of covariates, we’ll only rarely

have units in the same strata.
• What does that mean we’re estimating? Is it the ATT?

. . .
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# install.packages("cem",repos="http://r.iq.harvard.edu", type="source")
require(cem)
cem.match <- cem(treatment="treat",data=lalonde,drop="re78")
cem.match

## G0 G1
## All 429 185
## Matched 78 68
## Unmatched 351 117

cem.mod <- lm(re78~treat+age+educ+black+hispan+married+nodegree+re74+re75,lalonde,weights=cem.match$w)
coefs<-c(coefs,cem=coef(cem.mod)[2])
coefs

## base.treat ipw.logit.treat ipw.bart.treat pmat.logit.treat
## 1548.2438 1331.9846 1294.8386 1963.8733
## pmat.bart.treat mahal.match.treat gen.match.treat cem.treat
## 1929.5358 417.8293 258.2472 744.2106

Tweaking CEM

cutpoints <- list(age=c(25,35),educ=c(6,12),re74=c(100,5000),re75=c(100,5000))
cem.tweak.match <- cem(treatment="treat",data=lalonde,drop="re78",cutpoints=cutpoints)
cem.tweak.match

## G0 G1
## All 429 185
## Matched 168 160
## Unmatched 261 25

cem.tweak.mod <- lm(re78~treat+age+educ+black+hispan+married+nodegree+re74+re75,lalonde,weights=cem.tweak.match$w)
coefs<-c(coefs,cem.tweak=coef(cem.tweak.mod)[2])
coefs

## base.treat ipw.logit.treat ipw.bart.treat pmat.logit.treat
## 1548.2438 1331.9846 1294.8386 1963.8733
## pmat.bart.treat mahal.match.treat gen.match.treat cem.treat
## 1929.5358 417.8293 258.2472 744.2106
## cem.tweak.treat
## -451.7696
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MatchIt

• http://gking.harvard.edu/matchit

require(MatchIt)
#nn.match <- matchit(treat~age+educ+black+hispan+married+nodegree+re74+re75,data=lalonde,method='nearest',discard='control',exact=c('nodegree','black'),distance='GAMlogit')
nn.mod <- lm(re78~treat+age+educ+black+hispan+married+nodegree+re74+re75,lalonde,weights=nn.match$weights)
coefs <- c(coefs, nn.matchit=coef(nn.mod)[2])

Entropy Balance

• What if we framed preprocessing explicitly as an optimization problem?
• We want to minimize difference between empirical moments of treatment

and control by varying the weights accorded to individual observations in
our dataset.

• All while keeping weights relatively stable.
• This is “entropy balancing” created by Jens Hainmueller.
• We optimize the following problem:

minW ,λ0,λ L
p =

∑
D=0 wi log(wi/qi)+∑R

r=1 λr (
∑
D=0 wicri(Xi)−mr) +

(λ0 − 1) (
∑
D=0 wi − 1)

. . .

require(ebal,quietly=TRUE)
ebal.match <- ebalance(lalonde$treat, lalonde[,-c(1,ncol(lalonde))])

## Converged within tolerance

ebal.w <- c(rep(1,N),ebal.match$w)
ebal.mod <- lm(re78~treat+age+educ+black+hispan+married+nodegree+re74+re75,lalonde,weights=ebal.w)

Final Estimates

coefs<-c(coefs,ebal=coef(ebal.mod)[2])
coefs

## base.treat ipw.logit.treat ipw.bart.treat pmat.logit.treat
## 1548.2438 1331.9846 1294.8386 1963.8733
## pmat.bart.treat mahal.match.treat gen.match.treat cem.treat
## 1929.5358 417.8293 258.2472 744.2106
## cem.tweak.treat nn.matchit.treat ebal.treat
## -451.7696 1740.5631 1273.2618
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