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Structure of Class

• Today we’re going to talk about:

1. *apply functions
2. Marginal Effects
3. Sensitivity analysis for post-treament bias

The *apply family

• These functions allow one to efficiently perform a large number of actions
on data.

• apply - performs actions on the rows or columns of a matrix/array (1 for
rows, 2 for columns, 3 for ??)

• sapply - performs actions on every element of a vector
• tapply - performs actions on a vector by group
• replicate - performs the same action a given number of times

apply

A

## c d
## a 1 3
## b 2 4

apply(A, 1, sum)
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## a b
## 4 6

apply(A, 2, mean)

## c d
## 1.5 3.5

sapply

vec

## [1] "a" "b" "c"

sapply(vec, function(x) paste0(x, ".vec"))

## a b c
## "a.vec" "b.vec" "c.vec"

• Can be accomplished more simply with:

. . .

paste0(vec, ".vec")

## [1] "a.vec" "b.vec" "c.vec"

• Why?

• replicate is basically just sapply(1:N,funct) where funct never uses
the index.

tapply

tapply(1:10, makeGroups(5, 2), mean)

## 1 2 3 4 5
## 1.5 3.5 5.5 7.5 9.5
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Local Linear Regression

• W is an n× p diagonal weighting matrix, h is a “bandwidth”.
• Diagonal entries are 3

4 · (1− d
2) · 1{|d|≤1} where d = X−c

h

• β̂c = (X ′WX)−1X ′WY

• Covariance matrix is s2(X ′WX)−1

. . .

loc.lin <- function(Y, X, c = 0, bw = sd(X)/2) {
d <- (X - c)/bw
W <- 3/4 * (1 - d^2) * (abs(d) < 1)
W <- diag(W)
X <- cbind(1, d)
b <- solve(t(X) %*% W %*% X) %*% t(X) %*% W %*% Y
sigma <- t(Y - X %*% b) %*% W %*% (Y - X %*% b)/(sum(diag(W) > 0) - 2)
sigma <- solve(t(X) %*% W %*% X) * c(sigma)
return(c(est = b[1], se = sqrt(diag(sigma))[1]))

}

Simulate some Data

set.seed(1023) # Important for replication
X <- rnorm(1000, 0, 5)
Y <- sin(5 * X) * exp(abs(X)) + rnorm(1000)
dat <- data.frame(X, Y)
plot(X, Y, xlim = c(0, 5), ylim = c(-50, 50))

Look at the Kernel

x <- seq(-1, 1, 0.01)
y <- 3/4 * (1 - x^2)
plot(x, y, type = "l", xlab = "h", ylab = "weight")

Fit the Surface

X.est <- seq(0, 5, 0.1)
dat.llm <- sapply(X.est, function(x) loc.lin(Y, X, c = x, bw = 0.25))

3



4



5



plot(X, Y, xlim = c(0, 5), ylim = c(-50, 50), pch = 20)
lines(X.est, dat.llm[1, ], col = "red")
lines(X.est, dat.llm[1, ] + 1.96 * dat.llm[2, ], col = "pink")
lines(X.est, dat.llm[1, ] - 1.96 * dat.llm[2, ], col = "pink")

Introduce Example

• We’ll be working with data from a paper in the most recent issue of IO.
• Helfer, L.R. and E. Voeten. (2014) “International Courts as Agents of

Legal Change: Evidence from LGBT Rights in Europe”
• The treatment we are interested in is the presence of absence of a ECtHR

judgment.
• The outcome is the adoption of progressive LGBT policy.
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• And there’s a battery of controls, of course.
• Voeten has helpfully put all replication materials online.

Prepare example

require(foreign, quietly = TRUE)
d <- read.dta("replicationdataIOLGBT.dta")
# Base specification
d$ecthrpos <- as.double(d$ecthrpos) - 1
d.lm <- lm(policy ~ ecthrpos + pubsupport + ecthrcountry + lgbtlaws + cond +

eumember0 + euemploy + coemembe + lngdp + year + issue + ccode, d)
d <- d[-d.lm$na.action, ]
d$issue <- as.factor(d$issue)
d$ccode <- as.factor(d$ccode)
summary(d.lm)$coefficients[1:11, ]

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.589e+00 4.956e-01 -3.2052 1.360e-03
## ecthrpos 6.501e-02 1.056e-02 6.1537 8.289e-10
## pubsupport 6.549e-03 2.743e-03 2.3877 1.700e-02
## ecthrcountry 1.297e-01 3.584e-02 3.6201 2.980e-04
## lgbtlaws 2.358e-02 6.281e-03 3.7548 1.759e-04
## cond 9.277e-02 1.796e-02 5.1657 2.509e-07
## eumember0 -8.586e-03 8.498e-03 -1.0105 3.123e-01
## euemploy 3.659e-03 1.269e-02 0.2883 7.731e-01
## coemembe 2.083e-02 7.277e-03 2.8623 4.227e-03
## lngdp -7.522e-07 4.501e-07 -1.6711 9.477e-02
## year 8.020e-04 2.522e-04 3.1799 1.484e-03

Marginal Effects

• There has seemed to be a bit of confusion over marginal effects.
• The Blattman paper in HW3 uses marginal effects “well” in the sense of

causal inference.
• The Huber et al. paper uses them in a very standard way, but perhaps

not the way we’d want to think about them in THIS class.
• Use the builtin predict function; it will make your life easier.

. . .

d.lm.interact <- lm(policy ~ ecthrpos * pubsupport + ecthrcountry + lgbtlaws +
cond + eumember0 + euemploy + coemembe + lngdp + year + issue + ccode, d)
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frame0 <- frame1 <- model.frame(d.lm.interact)
frame0[, "ecthrpos"] <- 0
frame1[, "ecthrpos"] <- 1
meff <- mean(predict(d.lm.interact, newd = frame1) - predict(d.lm.interact,

newd = frame0))
meff

## [1] 0.08197

• Why might this be preferable to “setting things at their means/medians”?
• It’s essentially integrating over the sample’s distribution of observed char-

acteristics.
• (And if the sample is a SRS from the population [or survey weights make it

LOOK like it is], this will then get you the marginal effect on the population
of interest)

Delta Method

• Note 1: We know that our vector of coefficients are asymptotically multi-
variate normal.

• Note 2: We can approximate the distribution of many (not just linear)
functions of these coefficients using the delta method.

• Delta method says that you can approximate the distribution of h(bn) with
5h(b)′Ω5 h(b) Where Ω is the asymptotic variance of b.

• In practice, this means that we just need to be able to derive the function
whose distribution we wish to approximate.

Trivial Example

• We’re interested in the ratio of the coefficient on ecthrpos to that of
pubsupport.

• Call it b2
b3
. The gradient is ( 1

b3
, b2

b2
3
)

• Estimate this easily in R with:

. . .

grad <- c(1/coef(d.lm)[3], coef(d.lm)[2]/coef(d.lm)[3]^2)
grad

## pubsupport ecthrpos
## 334 8046
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se <- sqrt(t(grad) %*% vcov(d.lm)[2:3, 2:3] %*% grad)
est <- coef(d.lm)[2]/coef(d.lm)[3]
c(estimate = est, std.error = se)

## estimate.ecthrpos std.error
## 24.09 35.33

require(car)
deltaMethod(d.lm, "ecthrpos/pubsupport")

## Estimate SE
## ecthrpos/pubsupport 24.09 35.55

Linear Functions

• But for most “marginal effects”, you don’t need to use the delta method.
• Just remember your rules for variances.
• var(aX + bY ) = a2var(X) + b2var(Y ) + 2abcov(X,Y )
• If you are just looking at changes with respect to a single variable, you

can just multiply standard errors.
• That is, a change in a variable of 3 units means that the standard error for

the marginal effect would be 3 times the standard error of the coefficient.
• This isn’t what Clarify does, though. It is weird.

Zelig for Marginal Effects

• (Zelig works like Clarify. [gee, I wonder why?])

. . .

# install.packages('Zelig', repos='http://r.iq.harvard.edu', type='source')
require(Zelig, quietly = TRUE)
d.zg <- zelig(policy ~ ecthrpos * pubsupport + ecthrcountry + lgbtlaws + cond +

eumember0 + euemploy + coemembe + lngdp + year + issue + ccode, d, model = "ls",
cite = FALSE)

x0 <- setx(d.zg, ecthrpos = 0)
x1 <- setx(d.zg, ecthrpos = 1)
out <- sim(d.zg, x = x0, x1 = x1)
c(mean(out$qi$fd), meff)

## [1] 0.08150 0.08197
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Sensitivity Analysis

• We’re adding to Cyrus’s discussion on post-treatment bias with a sensitivity
analysis.

• This is also in Rosenbaum (1984), which he mentioned in class.
• The variable which one might think could induce post-treatment bias in

our example is that of “public acceptance”.

Rosenbaum Bounding

• In general Rosenbaum is a proponent of trying to “bound” biases.
• He does this in his “normal” sensitivity analysis method, and we do the

same, here.
• We will assume a “surrogate” for U (necessary for CIA), which is observed

post-treatment.
• The surrogate has two potential outcomes: S1 and S0
• It is presumed to have a linear response on the outcome.
• (As are the other observed covariates)
• This gives us the following two regression models: E[Y1|S1 = s,X = x] =
µ1 + β′x+ γ′s and
E[Y0|S0 = s,X = x] = µ0 + β′x+ γ′s

• This gives us:
τ = E[(µ1 + β′X + γ′S1)− (µ0 + β′X + γ′S0)]

• Which is equal to the following useful expression:
τ = µ1 − µ0 + γ′(E[S1 − S0])

• For us, this means that τ = β1 + β2E[S1 − S0]

Back to example

• Our surrogate is public acceptance.
• But it can be swayed by court opinions, right? This is at least plausible.
• Let’s try and get some reasonable bounds on τ .

. . .

sdS <- sd(d$pubsupport)
Ediff <- c(-1.5 * sdS, -sdS, -sdS/2, 0, sdS/2, sdS, 1.5 * sdS)
tau <- coef(d.lm)[2] + coef(d.lm)[3] * Ediff
names(tau) <- c("-1.5", "-1", "-.5", "0", ".5", "1", "1.5")
tau
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## -1.5 -1 -.5 0 .5 1 1.5
## 0.06621 0.06818 0.07015 0.07212 0.07409 0.07606 0.07803

• But with this method, you don’t necessarily have to assume that the
regression functions are this rigid.

• Can you think about how one might relax some assumptions?
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