This function calculates the RegressionROC Curve of of Hernández-Orallo doi:10.1016/j.patcog.2013.06.014 . It provides estimates for the positive and negative errors when predictions are shifted by a variety of constants (which range across the domain of observed residuals). Curves closer to the axes are, in general, to be preferred. In general, this curve provides a simple way to visualize the error properties of a regression model.

calculate_rroc(label, prediction, nbins = 100)

Arguments

label

True label

prediction

Model prediction of the label (out of sample)

nbins

Number of shift values to sweep over

Value

A tibble with nbins rows.

Details

The dot shows the errors when no shift is applied, corresponding to the base model predictions.

References

Hernández-Orallo, J. (2013). ROC curves for regression. Pattern Recognition, 46(12), 3395-3411.