QoI_cfg
is a configuration class for the Quantities of Interest to be
generated by the HTE analysis.
mcate
A configuration object of type MCATE_cfg
of
marginal effects to calculate.
pcate
A configuration object of type PCATE_cfg
of
partial effects to calculate.
vimp
A configuration object of type VIMP_cfg
of
variable importance to calculate.
diag
A configuration object of type Diagnostics_cfg
of
model diagnostics to calculate.
ate
Logical flag indicating whether an estimate of the ATE should be returned.
predictions
Logical flag indicating whether estimates of the CATE for every unit should be returned.
new()
Create a new QoI_cfg
object with specified Quantities of Interest
to estimate.
QoI_cfg$new(
mcate = NULL,
pcate = NULL,
vimp = NULL,
diag = NULL,
ate = TRUE,
predictions = FALSE
)
mcate
A configuration object of type MCATE_cfg
of marginal
effects to calculate.
pcate
A configuration object of type PCATE_cfg
of partial
effects to calculate.
vimp
A configuration object of type VIMP_cfg
of variable
importance to calculate.
diag
A configuration object of type Diagnostics_cfg
of
model diagnostics to calculate.
ate
A logical flag for whether to calculate the Average Treatment Effect (ATE) or not.
predictions
A logical flag for whether to return predictions of the CATE for every unit or not.
mcate_cfg <- MCATE_cfg$new(cfgs = list(x1 = KernelSmooth_cfg$new(neval = 100)))
pcate_cfg <- PCATE_cfg$new(
cfgs = list(x1 = KernelSmooth_cfg$new(neval = 100)),
model_covariates = c("x1", "x2", "x3"),
num_mc_samples = list(x1 = 100)
)
vimp_cfg <- VIMP_cfg$new()
diag_cfg <- Diagnostics_cfg$new(
outcome = c("SL_risk", "SL_coefs", "MSE"),
ps = c("SL_risk", "SL_coefs", "AUC")
)
QoI_cfg$new(
mcate = mcate_cfg,
pcate = pcate_cfg,
vimp = vimp_cfg,
diag = diag_cfg
)
mcate_cfg <- MCATE_cfg$new(cfgs = list(x1 = KernelSmooth_cfg$new(neval = 100)))
pcate_cfg <- PCATE_cfg$new(
cfgs = list(x1 = KernelSmooth_cfg$new(neval = 100)),
model_covariates = c("x1", "x2", "x3"),
num_mc_samples = list(x1 = 100)
)
vimp_cfg <- VIMP_cfg$new()
diag_cfg <- Diagnostics_cfg$new(
outcome = c("SL_risk", "SL_coefs", "MSE"),
ps = c("SL_risk", "SL_coefs", "AUC")
)
QoI_cfg$new(
mcate = mcate_cfg,
pcate = pcate_cfg,
vimp = vimp_cfg,
diag = diag_cfg
)
#> <QoI_cfg>
#> Public:
#> ate: TRUE
#> clone: function (deep = FALSE)
#> diag: Diagnostics_cfg, R6
#> initialize: function (mcate = NULL, pcate = NULL, vimp = NULL, diag = NULL,
#> mcate: MCATE_cfg, R6
#> pcate: PCATE_cfg, R6
#> predictions: FALSE
#> vimp: VIMP_cfg, R6
## ------------------------------------------------
## Method `QoI_cfg$new`
## ------------------------------------------------
mcate_cfg <- MCATE_cfg$new(cfgs = list(x1 = KernelSmooth_cfg$new(neval = 100)))
pcate_cfg <- PCATE_cfg$new(
cfgs = list(x1 = KernelSmooth_cfg$new(neval = 100)),
model_covariates = c("x1", "x2", "x3"),
num_mc_samples = list(x1 = 100)
)
vimp_cfg <- VIMP_cfg$new()
diag_cfg <- Diagnostics_cfg$new(
outcome = c("SL_risk", "SL_coefs", "MSE"),
ps = c("SL_risk", "SL_coefs", "AUC")
)
QoI_cfg$new(
mcate = mcate_cfg,
pcate = pcate_cfg,
vimp = vimp_cfg,
diag = diag_cfg
)
#> <QoI_cfg>
#> Public:
#> ate: TRUE
#> clone: function (deep = FALSE)
#> diag: Diagnostics_cfg, R6
#> initialize: function (mcate = NULL, pcate = NULL, vimp = NULL, diag = NULL,
#> mcate: MCATE_cfg, R6
#> pcate: PCATE_cfg, R6
#> predictions: FALSE
#> vimp: VIMP_cfg, R6